Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Kedziorek Mariusz, ${ }^{\text {a }} \boldsymbol{\dagger}$ Klaus

 Hafner ${ }^{\text {b }}$ and Hans J. Lindner ${ }^{\text {b }}$ *${ }^{\text {a }}$ Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44, 01-224
Warszawa 42, Poland, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Darmstadt University of Technology, Petersenstrasse 22, D-64287 Darmstadt, Germany

+ Research fellow at the Institut für Organische Chemie, Darmstadt University of Technology, July 1-September 1, 2002.

Correspondence e-mail:
lindner@oc1.oc.chemie.tu-darmstadt.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.149$
Data-to-parameter ratio $=14.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-Azulene-1-carboxaldehyde oxime

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}$, the azulene moiety is planar with a delocalized 10π-electron perimeter. In the crystal structure, the molecules are connected by hydrogen bonds to form centrosymmetric dimers.

Comment

Azulene-1-carboxaldehyde oxime was first obtained by Hafner \& Bernhard (1959) as a cystalline derivative of azulene-1-carbaldehyde. To determine the configuration of the oxime, the synthesis was optimized. The (E)-azulene-1carboxaldehyde oxime, (I), could be separated from the isomer (Z)-azulene-1-carboxaldehyde and crystallized. No isomerization could be observed in solution in the absence of acids. The (E-azulene-1-carboxaldehyde oxime shows the expected molecular geometry (see Fig. 1), viz. a planar azulene moiety with a delocalized 10π-electron perimeter [mean C-C distance 1.392 (4) A] and a central bond length of 1.489 (4) A. The crystal packing is determined by intermolecular hydrogen bonds and π-stacking, as shown in Fig. 2. Hydrogen-bonded centrosymmetric dimers are stacked along the c axis.

(I)

Experimental

To a mixture of hydroxylammonium chloride ($460 \mathrm{mg}, 6.6 \mathrm{mmol}$) and potassium acetate ($668 \mathrm{mg}, 6.8 \mathrm{mmol}$) in 40 ml ethanol azulene-1carbaldehyde ($1.0 \mathrm{~g}, 6.5 \mathrm{mmol}$) was added and the mixture was

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 8 April 2003
Accepted 9 April 2003
Online 23 May 2003
heated to 323 K . After 1.5 h , the solvent was evaporated. Chromatography with silica gel (hexane/ethyl acetate 4:1) yielded the oxime isomers. Dark green crystals of (I) were obtained from a toluene solution by evaporation. (E)-Azulene-1-carboxaldehyde oxime, (I), m.p. $393-394 \mathrm{~K} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz},\left[d_{6}\right] \mathrm{DMSO}$): $\delta=10.94(s, 1 \mathrm{H}$, $\mathrm{H} 11 \mathrm{O}), 8.92(d, 1 \mathrm{H}, \mathrm{H} 8), 8.72(s, 1 \mathrm{H}, \mathrm{H} 11), 8.42(d, 1 \mathrm{H}, \mathrm{H} 4), 8.13(d$, $1 \mathrm{H}, \mathrm{H} 2$), 7.74 (approx. $t, 1 \mathrm{H}, \mathrm{H} 6$), 7.43 ($d, 1 \mathrm{H}, \mathrm{H} 3$), 7.32 (approx. q, $2 \mathrm{H}, \mathrm{H} 5, \mathrm{H} 7$); $J_{2,3}=4.0, J_{4,5}=9.3, J_{7,8}=9.8, J_{5,6}=J_{6,7}=9.8 \mathrm{~Hz} .{ }^{13} \mathrm{C}$ NMR ($\left.125.75 \mathrm{MHz},\left[d_{6}\right] \mathrm{DMSO}\right): ~ \delta=144.9$ (C11), 143.2 (C10), 139.6 (C6), 138.2 (C4), 136.4 (C2), 136.3 (C9), 136.1 (C8), 125.4 (C5), 125.1 (C7), 121.8 (C1), 119.2 (C3).

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}$
$M_{r}=171.19$
Monoclinic, C2/c
$a=16.931$ (3) A
$b=6.174$ (2) A
$c=17.028$ (5) \AA
$\beta=94.00(2)^{\circ}$
$V=1775.6(8) \AA^{3}$
$Z=8$

Data collection

Oxford Diffraction Excalibur diffractometer with Sapphire CCD detector
ω and θ rotation scans
Absorption correction: none
5481 measured reflections
1803 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.149$
$S=0.98$
1803 reflections
121 parameters
$D_{x}=1.281 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{x}=1.281 \mathrm{Mg} \mathrm{m}$
Mo $K \alpha$ radiation
Cell parameters from 5481
reflections
$\theta=3.5-26.4^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, dark green
$0.52 \times 0.28 \times 0.14 \mathrm{~mm}$

815 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-21 \rightarrow 21$
$k=-7 \rightarrow 5$
$l=-21 \rightarrow 21$

$$
\begin{aligned}
& \mathrm{H} \text { atoms treated by a mixture of } \\
& \text { independent and constrained } \\
& \text { refinement } \\
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0524 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.13 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 11-\mathrm{H} 11 \mathrm{O} \cdots \mathrm{N} 11^{\mathrm{i}}$	$0.840(17)$	$2.043(19)$	$2.841(3)$	$158(3)$

Symmetry code: (i) $2-x,-y, 1-z$.

The position of the hydroyxl H atom was found in a difference Fourier map and refined. The other H atoms were treated as riding atoms.

Figure 2
A packing plot of (I), viewed along the b axis.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999) and ORTEPIII (Johnson \& Burnett, 1998); software used to prepare material for publication: SHELXL97, CIF and IUCr SHELXL97 template.

We thank H. Fuess, Fachgebiet Strukturforschung, TU Darmstadt, for diffractometer time, S. Foro for technical assistance, and the Fonds der Chemischen Industrie for partial funding. MK thanks the Dr. Otto Röhm-Gedächtnisstiftung, Darmstadt, for a research fellowship.

References

Hafner, K. \& Bernhard, C. (1959). Liebigs Ann. Chem. 625, 108-123.
Johnson, C. K. \& Burnett, M. N. (1998). ORTEPIII. Version 1.0.2. Oak Ridge National Laboratory, Tennessee, USA.
Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Limited, Oxford, England.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. Version of October 1999. Utrecht University, The Netherlands.

